# Partial Schur multiplier

Helder Geovane Gomes de Lima<sup>1</sup> Advisor: Mikhailo Dokuchaev <sup>2</sup>  $^{1}$ helderg@ime.usp.br <sup>2</sup> dokucha@ime.usp.br

#### Abstract

The partial Schur multiplier pM(G) of a group G is a generalization of the classical Schur multiplier M(G). While its classical version is a group, pM(G) is a semilattice of abelian groups  $pM_D(G)$  (called components), indexed by certain subsets  $D \subseteq G \times G$ . Each component  $pM_D(G)$  consists of partially defined functions  $\sigma : G \times G \to K$  having D as its domain. Such functions are called partial factor sets of G and are associated to the partial projective representations of G. This work discusses a specific component,  $pM_{G \times G}(G)$ , which is particularly interesting due to the fact that there are epimorphisms from it to any other component, assuming that K is an algebraically closed field. We characterize this component for some families of groups, including the dihedral and dicyclic groups. This is a joint work with H. Pinedo.

#### **1 Preliminaries**

**Proposition 1.** Let  $G = \text{Dic}_m$ , for some natural number  $m \ge 2$ . If  $\sigma \in pm'_{G \times G}(G)$  and  $\sigma \sim 1$ 

In [1] it was obtained the following decomposition for the partial Schur multiplier: **Theorem 1.** *The semigroups* pm(G) *and* pM(G) *are semilattices of abelian groups* 

$$pm(G) = \bigcup_{D \in C(G)} pm_D(G)$$
 and  $pM(G) = \bigcup_{D \in C(G)} pM_D(G)$ 

where C(G) is a semilattice subsets of  $G \times G$ , and the factor sets in  $pm_D(G)$  have domain D. The semilattice  $(C(G), \cap)$  is formed by the subsets of  $G \times G$  which are invariant under the action of a specific semigroup  $\mathcal{T}$  (it is the same for every group G), which is generated by symbols u, v and t with relations

 $u^2 = v^2 = (uv)^3 = 1, t^2 = t, ut = t, tuvt = tvuv, tvt = 0.$ 

This semigroup  $\mathcal{T}$  contains a copy  $\mathcal{S} = \langle u, v \mid u^2 = v^2 = (uv)^3 = 1 \rangle$  of the symmetric group  $S_3$ , and acts on  $G \times G$  by t(x, y) = (x, 1),  $u(x, y) = (xy, y^{-1})$  and  $v(x, y) = (y^{-1}, x^{-1})$ . The orbits of the action of  $S_3$  may have 1, 2, 3, or 6 elements. An  $S_3$  orbit with 2 or 6 elements will be called effective.

If K is an algebraically closed field, it is known from [3] that each element of pM(G) has some representative which is determined by its values on these effective orbits. More specifically, each component  $pm_D(G)$  of pm(G) has a subgroup  $pm'_D(G)$ , formed by the maps  $\sigma: G \times G \to K^*$  satisfying

 $\sigma(a, b)\sigma(b^{-1}, a^{-1}) = 1_K,$  $\sigma(a, b) = \sigma(b^{-1}a^{-1}, a) = \sigma(b, b^{-1}a^{-1}),$  then  $\sigma$  is uniquely determined by its values on the pairs

 $(a, a^k b)$ , where  $0 \le k \le m$ ,  $(a^i, b)$ , where  $2 \le i \le m - 1$ ,

which can be chosen in  $K^*$  arbitrarily, and also by its value on  $(a^m, b)$ , which must satisfy

$$\sigma^2(a^m, b) = \frac{(\sigma_m(a, b))^2}{(\sigma(a, b)\sigma(a, a^m b))^m}.$$

**Theorem 4.** If  $G = \text{Dic}_m$ , then  $pM_{G\times G}(G) \simeq (K^*)^{dc_m-2m+1}$ , where  $dc_m$  is the number of effective  $S_3$ -orbits of the group  $\text{Dic}_m$ , given by:

$$dc_m = \begin{cases} \frac{(4m-1)(4m-2)+4}{6}, & \text{if } 3 \mid m, \\ \frac{(4m-1)(4m-2)}{6}, & \text{if } 3 \nmid m. \end{cases}$$

# 4 Infinite cyclic group

On [3, Corollary 6.4], there was a description of  $pM_{G\times G}(G)$  for finite cyclic groups G. We obtained an analogous for the infinite cyclic group.

**Lemma 5.** Any element of  $pm'_{\mathbb{Z}\times\mathbb{Z}}(\mathbb{Z})$  is uniquely determined by its values on pairs  $(i, j) \in \mathbb{N} \times \mathbb{N}$ . Moreover, these values can be chosen arbitrarily in  $K^*$ .

**Proposition 2.** If  $\sigma \in pm'_{\mathbb{Z}\times\mathbb{Z}}(\mathbb{Z})$  and  $\sigma \sim 1$  then  $\sigma$  is uniquely determined by its values on  $\{1\} \times \mathbb{N}$ , which can be chosen arbitrarily in  $K^*$ .

**Theorem 5.**  $pM_{\mathbb{Z}\times\mathbb{Z}}(\mathbb{Z}) \simeq (K^*)^{\mathbb{N}}$ .

 $\sigma(a,1) = 1_K,$ 

and a factor set  $\sigma \in pm'_D(G)$  is completely determined by its values in the representatives of the effective  $S_3$ -orbits of D.

**Lemma 1.** If  $\sigma \in pm'_{C_m \times C_m}(C_m)$  and  $m \ge 3$  then  $\sigma$  is uniquely determined by its values in the elements from

 $S_{C_m} = \{ (a^i, a^j) \mid 1 \le i \le \lfloor (m-1)/3 \rfloor \text{ and } i \le j \le m-2i-1 \}$  $\cup \{ (a^i, a^j) \mid i = j = m/3 \in \mathbb{Z} \}.$ 

Moreover, these values can be chosen arbitrarily in  $K^*$ .

**Lemma 2.** Let  $G = C_m \times C_2$  or  $G = D_{2m}$ , and  $m \ge 3$ . Then, with the notation from Lemma 1, any  $\sigma \in pm'_{G \times G}(G)$  is completely determined by its values on the elements from

 $S_{G} = S_{C_{m}} \cup \{ (a^{k}, a^{l}b) \mid 1 \leq k \leq \lfloor (m-1)/2 \rfloor \text{ and } 0 \leq l \leq m-1 \} \\ \cup \{ (a^{k}, a^{l}b) \mid \text{if } k = m/2 \in \mathbb{Z} \text{ and } 0 \leq l \leq (m/2) - 1 \}.$ 

Moreover, these values can be chosen arbitrarily in  $K^*$ .

#### 2 Dihedral groups

On [6] it was proved that the total component  $pM_{S_3 \times S_3}(S_3)$  is isomorphic to  $(K^*)^3$ . We obtained the following generalization for dihedral groups  $D_{2m} = \langle a, b \mid a^m = b^2 = (ab)^2 = 1 \rangle, m \in \mathbb{N}$ : **Theorem 2.**  $pM_{D_{2m} \times D_{2m}}(D_{2m}) \simeq (K^*)^{d_m - \lfloor \frac{m-1}{2} \rfloor}$ , where

$$d_{m} = \begin{cases} \frac{(2m-1)(2m-2)+4}{6}, & \text{if } 3 \mid m, \end{cases}$$

# **5 Direct product of two cyclic groups**

**Proposition 3.** Let  $G = C_m \times C_n$ ,  $m, n \in \mathbb{N}$  and  $\sigma \in pm'_{G \times G}(G)$  such that  $\sigma \sim 1$ . Then  $\sigma$  is uniquely determined by its values on the pairs

$$\begin{aligned} &(a, a^k b^l), \text{ where } 0 \leq k \leq m-1, \ 1 \leq l \leq \lfloor (n-1)/2 \rfloor, \\ &(a, a^k b^{n/2}), \text{ where } 0 \leq k \leq \lfloor (m-1)/2 \rfloor \text{ (if } n \text{ is even}), \\ &(a^i, b), \text{ where } 2 \leq i \leq \lfloor m/2 \rfloor, \\ &(b, b^l), \text{ where } 1 \leq l \leq \lfloor (n-1)/2 \rfloor \text{ (if } n \geq 3), \end{aligned}$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

and these values can be chosen in  $K^*$  arbitrarily. **Theorem 6.** If  $G = C_m \times C_n$ , then  $pM_{G \times G}(G) \simeq (K^*)^{c_{m,n}-|Q_1|-|Q_2|}$ , where  $Q_1 \subseteq S_{C_m \times C_n}$  is the set of pairs given by (1) – (3), and  $Q_2 \subseteq S_{C_m \times C_n}$  is given by (4).

### **6** For future research...

Determine the total component of the partial Schur multiplier for:

• Free abelian groups  $\mathbb{Z}^k$ , with  $k \geq 2$ ;

• Direct products of arbitrary groups;

Semidirect products of finite cyclic groups C<sub>m</sub> ⋊ C<sub>n</sub>, or arbitrary groups;
Symmetric groups S<sub>n</sub> where n ≥ 4.

#### 7 Acknowledgment

This work was supported by FAPESP (2009/53551-9).



is the number of effective  $S_3$ -orbits of the dihedral group  $D_{2m}$ .

In the case of the infinite dihedral group, we got the following:

**Lemma 3.** Any element of  $pm'_{D_{\infty} \times D_{\infty}}(D_{\infty})$  is uniquely determined by its values on pairs in the set  $\{(a^i, a^j) \mid (i, j) \in \mathbb{N} \times \mathbb{N}\} \cup \{(a^k, a^l b) \mid (k, l) \in \mathbb{N} \times \mathbb{Z}\}$ , which can be any values in  $K^*$ . **Theorem 3.**  $pM_{D_{\infty} \times D_{\infty}}(D_{\infty}) \simeq (K^*)^{(\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{Z})}$ .

# **3** Dicyclic groups

The dicyclic group of order 4n is defined by  $\text{Dic}_m = \langle a, b \mid a^{2m} = 1, b^2 = a^m, b^{-1}ab = a^{-1} \rangle$ . Among these are the generalized quaternion groups, for which *m* is a power of 2. Lemma 4. *The set* 

$$S_{\text{Dic}_m} = S_{C_{2m}} \cup \{ (a^i, a^k b) \mid 1 \le i \le m - 1, 0 \le k \le 2m - 1 \} \cup \{ (a^m, a^k b) \mid 0 \le k \le m - 1 \}$$

contains exactly one representative of each effective orbit of  $S_3$  on  $\text{Dic}_m \times \text{Dic}_m$ .

# 8 References

[1] M. Dokuchaev and B. Novikov. Partial projective representations and partial actions. J. *Pure Appl. Algebra*, 214:251–268, 2010.

- [2] M. Dokuchaev and B. Novikov. Partial projective representations and partial actions II. *Journal of Pure and Applied Algebra*, 216:438–455, 2012.
- [3] M Dokuchaev, B Novikov, and H Pinedo. The partial Schur multiplier of a group. *Journal of Algebra*, 392:199–225, 2013.
- [4] M. Dokuchaev, H. Pinedo, and H. G. G. de Lima. Partial Representations and Their Domains. Preprint, 2014.
- [5] B. Novikov and H. Pinedo. On components of the partial Schur multiplier. *Communications in Algebra*, 42(6):2484–2495, 2014.
- [6] H. Pinedo. A Calculation of The Partial Shur Multiplier of S3. Preprint, 2013.
- [7] H. Pinedo. On Elementary Domains of Partial Projective Representations of Groups. *Algebra Discrete Math.*, 15(1):63–82, 2013.